Machine Learning for Operations Lecture 1: Model Assessment & Selection

Gah-Yi Ban

Columbia GSB Fall 2016

Outline

What is Machine Learning?

Model Assessment & Selection

In-sample vs. Out-of-sample performance Regularization

Cross-Validation

References

- Ban, Gah-Yi, Noureddine El Karoui, and Andrew EB Lim. "Machine Learning and Portfolio Optimization." Management Science, Articles in Advance, 21 Nov 2016.
- ► Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The elements of statistical learning. Vol. 2. Springer, Berlin: Springer series in statistics, 2013. [available free online]

What is Machine Learning?

- The study and construction of algorithms that can learn from and take actions on data
- Supervised (input and output) vs. Unsupervised (input only)
 - e.g. defining customer segmentation groups is unsupervised learning, whereas predicting total spending given customer characteristics is supervised learning
 - We focus on supervised learning, where a performance metric (e.g. MSE, total revenue, etc) is well-defined
- Traditionally focused on prediction problems, but same principles apply to data-driven prescription (decision) problems

Supervised vs. Unsupervised Learning

Unsupervised: defining customer segmentation

Supervised: predicting total spending given customer characteristics

TYPES OF CUSTOMER SEGMENTS

- VALUE CONVENIENCE IN DELIVERY. ORDERING
- I ONG RELATIONSHIP LARGE REFERRALS

- BRAND BUYERS, NOT PRICE SENSITIVI
- HIGHEST INCOME. MURE UPTEN MALE
 EXPENSIVE TO ACQUIRE, BUT BUY MOST INITIALLY AND REFER MORE

NOT CONCERNED WITH PERISHABLES OR DELIVERY TIME WINDOWS
 SMALL SPENDING GROWTH

RELATIONSHIP SEEKERS

- INFLUENCED BY RETAILER BRAND, SUGGESTIONS, AND PROMOTIONS
- SMALL SPENDING GROWTH/REFERRAL

- PRICE IS PRIMARY AND PERISHABLES ARE NOT IMPORTANT
 LOW INCOME.
- SMALL PURCHASES

LOW INCOME

Portfolio Optimization

Consider the portfolio optimization problem (Markowitz, 1952):

$$\begin{array}{lll}
\min_{\mathbf{w} \in \mathbb{R}^p} & \mathbf{w}^\top \mathbf{\Sigma} \mathbf{w} \\
s.t. & \mathbf{w}^\top \boldsymbol{\mu} &= R \\
& \mathbf{w}^\top \mathbf{1} &= 1
\end{array} \tag{MV}$$

where

- **X**: $p \times 1$ random vector of relative returns
- $\mu = E(X)$: mean returns
- ho Σ = $Cov(\mathbf{X})$: $p \times p$ covariance matrix for the relative returns
- Solution: w₀(R)
- ▶ Same if return constraint is relaxed to $\mathbf{w}^{\top} \mu \geq R$

Sample Average Approximation

- In practice, we don't know the distribution P of X but have data
- Suppose we have n iid observations of asset returns from P: $\mathcal{X}_n = [\mathbf{x}_1, \dots, \mathbf{x}_n]$.
- ▶ Then solve

$$\begin{array}{ll} \min \limits_{\mathbf{w} \in \mathbb{R}^p} & \mathbf{w}^\top \hat{\Sigma}_{1:n} \mathbf{w} \\ s.t. & \mathbf{w}^\top \hat{\boldsymbol{\mu}}_n = R \\ & \mathbf{w}^\top \mathbf{1} = 1 \end{array} \tag{SAA}$$

where

- \triangleright $\hat{\Sigma}_{1:n}$ is the sample covariance matrix of $[\mathbf{x}_1, \dots, \mathbf{x}_n]$.
- $\hat{\mu}_n$ is the sample average of the returns
- ► Solution: $\hat{\mathbf{w}}_{SAA}(R)$

In-sample vs. Out-of-sample performance

Three types of performance measures:

- ► In-sample performance: the performance of the learned action in the (training) sample, i.e. the data you used to learn
- Out-of-sample, or test, or generalization performance: the average performance of the learned action over all possible new observations
- Expected test, or true performance: the average performance of the learned action over all possible training sets and over all possible new observations

Note 1: for typical ML prediction problems, think error not performance. E.g. in-sample error, out-of-sample error, prediction error Note 2: Training performance always overestimates (w.p. 1) both the out-of-sample and expected performances (why?)

In-sample vs. Out-of-sample return

In-sample (aka "training") return:

$$\hat{\mathbf{w}}_{SAA}^{ op}\hat{oldsymbol{\mu}}_n$$

Out-of-sample (aka "test" or "generalization") return:

$$\mathbb{E}_{\boldsymbol{X}_{n+1}}[\hat{\boldsymbol{w}}_{SAA}^{\top}\boldsymbol{X}_{n+1}|\mathcal{X}_{n}] = \hat{\boldsymbol{w}}_{SAA}^{\top}\boldsymbol{\mu}$$

Expected test (aka "true") return:

$$\mathbb{E}_{\mathcal{X}_n}[\mathbb{E}_{\boldsymbol{X}_{n+1}}[\hat{\boldsymbol{w}}_{\textit{SAA}}^{\top}\boldsymbol{X}_{n+1}|\mathcal{X}_n]]$$

In-sample vs. Out-of-sample risk

In-sample risk:

$$\hat{\boldsymbol{w}}_{\textit{SAA}}^{\top}\hat{\boldsymbol{\Sigma}}_{1:n}\hat{\boldsymbol{w}}_{\textit{SAA}}$$

Out-of-sample risk:

$$Var_{\mathbf{X}_{n+1}}[\hat{\mathbf{w}}_{SAA}^{\top}\mathbf{X}_{n+1}|\mathcal{X}_n] = \hat{\mathbf{w}}_{SAA}^{\top}\Sigma\hat{\mathbf{w}}_{SAA}$$

Expected test risk:

$$\mathbb{E}_{\mathcal{X}_n}[\textit{Var}_{\boldsymbol{X}_{n+1}}[\hat{\boldsymbol{w}}_{\textit{SAA}}^{\top}\boldsymbol{X}_{n+1}|\mathcal{X}_n]]$$

Performance of SAA: Simulated Data

Fix (ν, Q) and target return level R.

Then for $b = 1, \ldots, B$,

- ▶ Generate $\mathcal{X}_{b,n} = [\mathbf{x}_{b,1}, \dots, \mathbf{x}_{b,n}]$, where $\mathbf{X}_{b,i} \stackrel{iid}{\sim} \mathcal{N}(\nu, Q)$ for all $i = 1, \dots, n$
- ▶ Solve the SAA problem for $\hat{\mathbf{w}}_{b,SAA}$
- ▶ Compute its out-of-sample return and risk: $\hat{\mathbf{w}}_{b,SAA}^{\top} \nu$ and $\hat{\mathbf{w}}_{b,SAA}^{\top} Q \hat{\mathbf{w}}_{b,SAA}$

Performance of SAA

Return vs. Risk

Performance of SAA

Return vs. Risk

SAA is an error-maximizing algorithm

- Although SAA makes intuitive sense, it is highly unreliable for portfolio optimization with real stock return data
- ▶ This is well-documented across finance, statistics and OR:
 - Markowitz: Frankfurter et al. (1971), Frost & Savarino (1986, 1988b), Michaud (1989), Best & Grauer (1991), Chopra & Ziemba (1993), Broadie (1993), Lim et al. (2011)
- Michaud (1989): The (in-sample) portfolio optimization solution is an "error-maximizing" solution

Regularization

- Regularization: perturbing a linear operator problem for improved stability of solution [Ivanov (1962), Phillips (1962), Tikhonov (1963)]
- E.g. Least-squares regression with regularization:

$$\min_{\beta \in \mathbb{R}^p} ||\mathbf{y} - \mathbf{X}\beta||_2 + \frac{\lambda_n ||\beta||_k}{\lambda_n},$$

where λ_n is the degree of regularization, and k = 1 (LASSO), k = 2 (ridge regression) yield popular penalty functions.

- Intuition: perturbing the in-sample problem reduces over-fitting; it adds bias but can improve the variance, which is good for generalization
- ▶ In general, L-1 norm penalty yields sparse (many elements are exactly zero) solution vector and L-2 norm penalty yields dense (many small, but non-zero elements) solution vector
- ▶ While these have justifications in regression problems, it's not clear why one would want sparse or dense portfolio solutions

Performance-based regularization (PBR)

 Performance-based regularization: perturb portfolio problem for improved performance of the solution

$$\begin{array}{lll} \min\limits_{\mathbf{w}} & \mathbf{w}^{\top} \hat{\Sigma}_{n} \mathbf{w} \\ s.t. & \mathbf{w}^{\top} \hat{\mu}_{n} = R \\ \mathbf{w}^{\top} \mathbf{1} = 1 \\ sVar(\mathbf{w}^{\top} \hat{\Sigma}_{n} \mathbf{w}) \leq U \end{array}$$

- ► Intuition: penalize solutions **w** associated with greater estimation errors of objective
- ▶ Q: what about regularizing the constraint uncertainty $\mathbf{w}^{\top}\hat{\mu}_{n}$?

Schematic for PBR

PBR for Mean-Variance problem

The sample variance of the sample variance of the portfolio, $SVar(w'\hat{\Sigma}_n w)$ is given by:

$$SVar(w'\hat{\Sigma}_n w) = \Sigma_{i=1}^p \Sigma_{j=1}^p \Sigma_{k=1}^p \Sigma_{l=1}^p w_i w_j w_k w_l \hat{Q}_{ijkl},$$

where

- $\hat{Q}_{ijkl} = \frac{1}{n} (\hat{\mu}_{4,ijkl} \hat{\sigma}_{ij}^2 \hat{\sigma}_{kl}^2) + \frac{1}{n(n-1)} (\hat{\sigma}_{ik}^2 \hat{\sigma}_{jl}^2 + \hat{\sigma}_{il}^2 \hat{\sigma}_{jk}^2),$
- $\hat{\mu}_{4,ijkl}$ is the sample average estimator for $\mu_{4,ijkl}$, the fourth central moment of the elements of \boldsymbol{X}
- $\hat{\sigma}_{ij}^2$ is the sample average estimator for σ_{ij}^2 , the covariance of the elements of \mathbf{X} .

PBR constraint for Markowitz is thus a quartic polynomial. However, determining whether a quartic function is convex or not is an NP-hard problem [Ahmadi et al. (2013)]

PBR for Mean-Variance problem

Convex approximation I

► Rank-1 approximation:

$$(\mathbf{w}^{\top}\hat{\alpha})^4 \approx \Sigma_{i=1}^{\rho} \Sigma_{j=1}^{\rho} \Sigma_{k=1}^{\rho} \Sigma_{l=1}^{\rho} w_i w_j w_k w_l \hat{Q}_{ijkl},$$

where
$$\hat{\alpha}_i = \sqrt[4]{\hat{Q}_{ijij}}$$
.

▶ Approximate PBR constraint: $\mathbf{w}^{\top} \hat{\alpha} \leq \sqrt[4]{U}$

PBR for Mean-Variance problem

Convex approximation II

Best convex quadratic approximation:

$$(\boldsymbol{w}^{\top}A\boldsymbol{w})^2 \approx \boldsymbol{\Sigma}_{i=1}^{p} \boldsymbol{\Sigma}_{j=1}^{p} \boldsymbol{\Sigma}_{k=1}^{p} \boldsymbol{\Sigma}_{l=1}^{p} w_i w_j w_k w_l \hat{Q}_{ijkl},$$

such that the elements of A are as close as possible to the pair-wise terms of Q, i.e. $A_{ij}^2 \approx \hat{Q}_{ijij}$

Solve semidefinite program: $A^* = \underset{A \succeq 0}{\operatorname{argmin}} ||A - Q_2||_F$, where Q_2 is a matrix with ij-th element equalling \hat{Q}_{ijij} and $||\cdot||_F$ denotes the Frobenius norm:

$$||A||_F = \sqrt{\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^2}$$

▶ Approximate PBR constraint: $\mathbf{w}^{\top} A^* \mathbf{w} \leq \sqrt{U}$

Cross-Validation (CV)

Cross-Validation: if there's enough data, put aside some for tuning free parameters (the "validation data set"). E.g. 50% for training, 25% for validation and 25% for testing

k-fold Cross Validation: divide into $2 \le k \le n$ sub-training sets to maximize use of scarce training data.

Larger then k, the better the estimation of expected test error, but greater the computational burden and variance. k = 5, 10 are known to balance the trade-offs well. k = n is leave-one-out CV

k-fold CV

Expected test error (orange) and tenfold cross-validation curve (blue) estimated from a single training set for best-subset regression of size p.

Performance-based CV

- CV: common technique in machine learning to tune free parameters
- ▶ k-fold CV: split training data into k equally-sized bins, train statistical model on every possible combination of k-1 bins, then tune parameter on the remaining bin.
- ▶ Performance-based *k*-fold CV: (1) search boundary for *U*₁ needs to be set carefully in order to avoid infeasibility and having no effect; (2) tune parameters by the Sharpe ratio, not by the mean squared error

Performance-based Cross-Validation

Figure: A schematic explaining the out-of-sample performance-based k-cross validation (OOS-PBCV) algorithm used to calibrate the constraint rhs, U, for the case k=3. The training data set is split into k bins, and the optimal U for the entire training data set is found by averaging the best U found for each subset of the training data.

Empirical Results: Fama-French data sets

OOS Average Sharpe Ratio (Return/Std)

	FF 5 Industry		FF 10 Industry	
	p=5		p=10	
Mean-Variance R=0.04				
SAA	1.1459		1.1332	
	2 bins	3 bins	2 bins	3 bins
PBR (rank-1)	1.2603	1.3254	1.1868	1.2098
	(0.0411)	(0.0286)	(0.0643)	(0.0509)
PBR (PSD)	1.1836	1.1831	1.1543	1.1678
	(0.0743)	(0.071)	(0.0891)	(0.0816)
NS	1.0023 (0.1404)		0.9968	
			(0.1437)	
L1	1.0136	1.0386	1.1185	1.1175
	(0.1568)	(0.1396)	(0.1008)	(0.1017)
L2	0.9711	1.0268	1.0579	1.0699
	(0.1781)	(0.1452)	(0.1482)	(0.1280)

Parentheses: p-values of tests of differences from the SAA method.

Empirical Results: Fama-French data sets

OOS Average Sharpe Ratio (Return/Std)

	FF 5 Industry		FF 10 Industry	
	p=5		p=10	
Markowitz R=0.08				
SAA	1.1573		1.1225	
	2 bins	3 bins	2 bins	3 bins
PBR (rank-1)	1.3286	1.3551	1.1743	1.2018
	(0.0223)	(0.0208)	(0.0668)	(0.0510)
PBR (PSD)	1.1813	1.1952	1.1467	1.1575
	(0.0648)	(0.0614)	(0.0893)	(0.0844)
NS	0.9664 (0.1514)		0.9405	
			(0.1577)	
L1	0.9225	0.9965	1.0318	1.0779
	(0.1857)	(0.1403)	(0.1332)	(0.1181)
L2	0.9703	1.0284	1.0671	1.0776
	(0.1649)	(0.1398)	(0.1398)	(0.1209)

Parentneses: p-values of tests of differences from the SAA method.

Mean-CVaR Portfolio Optimization

Consider the mean-Conditional Value-at-Risk portfolio optimization problem:

$$\min_{\mathbf{w}} CVaR(\mathbf{w}; \mathbf{X}, \beta)
s.t. \mathbf{w}^{\top} \mu = R
\mathbf{w}^{\top} \mathbf{1} = 1$$
(1)

where

$$\qquad \qquad \quad \mathsf{CVaR}(\mathbf{w}; \mathbf{X}, \beta) = \min_{\alpha} \left\{ \alpha + \frac{1}{1-\beta} \mathbb{E}(-\alpha - \mathbf{w}^{\top} \mathbf{X}_i)^{+} \right\}$$

Conditional Value-at-Risk

- β = cutoff level, e.g. 95%, 99%
- Pros: tell you how thick the loss tail is; also a coherent risk measure [Acerbi & Tasche (2001)]

SAA for mean-CVaR problem

▶ Data: n iid observations of asset returns $\mathcal{X}_n = X_1, \dots, X_n \sim P$

where

• $\hat{\mu}_n$ is the sample average return;

$$\widehat{CVaR}_n(\mathbf{w}; \mathcal{X}_n, \beta) = \min_{\alpha} \{ \alpha + \frac{1}{n(1-\beta)} \sum_{i=1}^n (-\alpha - \mathbf{w}^\top \mathbf{X}_i)^+ \}$$

PBR for mean-CVaR problem

Proposition

Suppose $\mathcal{X}_n = [X_1, \dots, X_n] \stackrel{\textit{iid}}{\sim} F$, where F is absolutely continuous with twice continuously differentiable pdf. Then

$$Var[\widehat{CVaR}_n(\mathbf{w}; \mathcal{X}_n, \beta)] = \frac{1}{n(1-\beta)^2} Var[(-\mathbf{w}^{\top} \mathcal{X}_n - \alpha_{\beta}(\mathbf{w}))^+] + O(n^{-2}),$$

where

$$\alpha_{\beta}(\mathbf{w}) = \inf\{\alpha : P(-\mathbf{w}^{\top}X \ge \alpha) \le 1 - \beta\},\$$

the Value-at-Risk (VaR) of the portfolio w at level β .

PBR for mean-CVaR problem

$$\begin{aligned} & \underset{\mathbf{w}}{\min} & \widehat{CVaR}_{n}(\mathbf{w}; \mathcal{X}_{n}, \beta) \\ & \mathbf{s}.t. & \mathbf{w}^{\top} \hat{\boldsymbol{\mu}}_{n} = & R \\ & \mathbf{w}^{\top} \mathbf{1} = & 1 \\ & \frac{1}{n(1-\beta)^{2}} z^{\top} \Omega_{n} z \leq & U_{1} \\ & \frac{1}{n} \mathbf{w}^{\top} \hat{\boldsymbol{\Sigma}}_{n} \mathbf{w} \leq & U_{2} \\ & z_{i} = \max(0, -\mathbf{w}^{\top} X_{i} - \alpha), \quad i = 1, \dots, n. \end{aligned}$$

- Not convex. Combinatorial optimization problem
- ▶ Theorem: convex relaxation, a QCQP, is tight
- ▶ Tune U_1 and U_2 via performance based k-fold CV

Empirical Results: mean-CVaR

OOS Average Sharpe Ratio (Return/CVaR)

		FF 10 Industry	
p=5		p=10	
1.2137		1.0321	
2 bins	3 bins	2 bins	3 bins
1.2113	1.1733	1.0506	1.1381
(0.0554)	(0.0674)	(0.0638)	(0.0312)
1.2089	1.1802	1.0994	1.0519
(0.0746)	(0.0790)	(0.1051)	(0.1338)
1.2439	1.2073	1.1112	1.1422
(0.0513)	(0.0601)	(0.0691)	(0.0648)
1.0112	1.0754	0.9254	0.9741
(0.1497)	(0.1366)	(0.2293)	(0.1880)
0.9650	1.0636	1.0031	0.9835
(0.1780)	(0.1287)	(0.1512)	(0.1598)
	1.2 2 bins 1.2113 (0.0554) 1.2089 (0.0746) 1.2439 (0.0513) 1.0112 (0.1497) 0.9650 (0.1780)	1.2137 2 bins 3 bins 1.2113 1.1733 (0.0554) (0.0674) 1.2089 1.1802 (0.0746) (0.0790) 1.2439 1.2073 (0.0513) (0.0601) 1.0112 1.0754 (0.1497) (0.1366) 0.9650 1.0636 (0.1780) (0.1287)	1.2137 1.03 2 bins 3 bins 2 bins 1.2113 1.1733 1.0506 (0.0554) (0.0674) (0.0638) 1.2089 1.1802 1.0994 (0.0746) (0.0790) (0.1051) 1.2439 1.2073 1.1112 (0.0513) (0.0601) (0.0691) 1.0112 1.0754 0.9254 (0.1497) (0.1366) (0.2293) 0.9650 1.0636 1.0031

Parentneses: p-values of tests of differences from the SAA method.

Empirical Results: mean-CVaR

OOS Average Sharpe Ratio (Return/CVaR)

	FF 5 Industry		FF 10 Industry	
	p=5		p=10	
Mean-CVaR R=0.08				
SAA	1.2487		1.0346	
	2 bins	3 bins	2 bins	3 bins
PBR (CVaR only)	1.2493	1.2098	1.0551	1.1433
	(0.0434)	(0.0462)	(0.0579)	(0.0323)
PBR (mean only)	1.2480	1.2088	1.0987	1.0470
	(0.0591)	(0.0693)	(0.1053)	(0.1384)
PBR (both)	1.2715	1.2198	1.1122	1.1449
	(0.0453)	(0.0544)	(0.0664)	(0.0639)
L1	0.8921	0.9836	0.9416	1.0087
	(0.1964)	(0.1572)	(0.2122)	(0.1645)
L2	0.9367	1.0801	1.0278	0.9947
	(0.1989)	(0.1179)	(0.1323)	(0.1530)
Parentheses: n-values	(0.1989)	(0.1179)	(0.1323)	(0.153

Parentneses: p-values of tests of differences from the SAA method.

Summary

Model Assessment & Selection

- In-sample vs. Out-of-sample performance measures
- In general, in-sample optimal actions (predictions/decisions) do not generalize well out-of-sample. For the portfolio selection problem, solutions overweigh idiosyncratic observations in the training data.
- ▶ Regularization: *L*₁, *L*₂ norm penalties are standard, we explored more complex ones (PBR) in Ban et al. (2016) to focus on the performance of a decision, rather than the prediction error.
- Cross-Validation: data-driven methods to tune regularization parameters
- ► Can expect better out-of-sample performance with optimal amount of regularization that balances bias and variance.
- ▶ PBR solutions are better than SAA and *L*₁, *L*₂ regularized solutions on two well-known, publicly available data sets.