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What is Machine Learning?

I The study and construction of algorithms that can learn from and
take actions on data

I Supervised (input and output) vs. Unsupervised (input only)
I e.g. defining customer segmentation groups is unsupervised

learning, whereas predicting total spending given customer
characteristics is supervised learning

I Supervised learning is more relevant for OR, since this involves a
performance metric (e.g. MSE, total revenue, etc)

I Traditionally focused on prediction problems, but same principles
apply to data-driven prescription (decision) problems
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What can Machine Learning do for OR?

Research opportunities:
I Modeling: new models that integrate data and decision models
I Computational: efficient algorithms to solve data-driven problems
I Analytical: statistical analysis (asymptotic convergence,

finite-sample error bounds, analysis of learning rates)
Impact on Practice:

I Data-driven models are by design implementable and automatable
I We’re already seeing data-driven OR models at the heart of many

organizations
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PART I

Model Assessment, Selection

and

Portfolio Optimization

5 / 152



Part I References

I Friedman, Jerome, Trevor Hastie, and Robert Tibshirani. The
elements of statistical learning. Vol. 2. Springer, Berlin: Springer
series in statistics, 2013. (available free online) [FHT13]

I Ban, Gah-Yi, Noureddine El Karoui, and Andrew EB Lim.
"Machine Learning and Portfolio Optimization." Management
Science, Articles in Advance, 21 Nov 2016. Available on
gahyiban.com [BEKL16]

6 / 152

gahyiban.com


Portfolio Optimization

Consider the portfolio optimization problem (Markowitz, 1952):

min
w∈Rp

w>Σw

s.t . w>µ = R
w>1 = 1

(MV)

where
I X: p × 1 random vector of relative returns
I µ = E(X): mean returns
I Σ = Cov(X): p × p covariance matrix for the relative returns

I Solution: w0(R)

I Same if return constraint is relaxed to w>µ ≥ R
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Sample Average Approximation

I In practice, we don’t know the distribution P of X but have data
I Suppose we have n iid observations of asset returns from P:
Xn = [x1, . . . ,xn].

I Then solve

min
w∈Rp

w>Σ̂1:nw

s.t . w>µ̂n = R
w>1 = 1

(SAA)

where
I Σ̂1:n is the sample covariance matrix of [x1, . . . ,xn].
I µ̂n is the sample average of the returns
I Solution: ŵSAA(R)
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In-sample vs. Out-of-sample performance

Three types of performance measures:
I In-sample performance: the performance of the learned action in

the (training) sample, i.e. the data you used to learn
I Out-of-sample, or test, or generalization performance: the average

performance of the learned action over all possible new
observations

I Expected test, or true performance: the average performance of
the learned action over all possible training sets and over all
possible new observations

Note 1: for typical ML prediction problems, think error not performance.
E.g. in-sample error, out-of-sample error, prediction error
Note 2: Training performance always overestimates (w.p. 1) both the
out-of-sample and expected performances (why?)
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In-sample vs. Out-of-sample return

In-sample (aka “training”) return:

ŵ>SAAµ̂n

Out-of-sample (aka “test” or “generalization”) return:

EXn+1 [ŵ>SAAXn+1|Xn] = ŵ>SAAµ

Expected test (aka “true”) return:

EXn [EXn+1 [ŵ>SAAXn+1|Xn]]
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In-sample vs. Out-of-sample risk

In-sample risk:
ŵ>SAAΣ̂1:nŵSAA

Out-of-sample risk:

VarXn+1 [ŵ>SAAXn+1|Xn] = ŵ>SAAΣŵSAA

Expected test risk:

EXn [VarXn+1 [ŵ>SAAXn+1|Xn]]
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Performance of SAA: Simulated Data

Fix (ν,Q) and target return level R. Then for b = 1, . . . ,B,

I Generate Xb,n = [xb,1, . . . ,xb,n], where Xb,i
iid∼ N (ν,Q) for all

i = 1, . . . ,n
I Solve the SAA problem for ŵb,SAA

I Compute its out-of-sample return and risk: ŵ>b,SAA ν and
ŵ>b,SAAQ ŵb,SAA
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Performance of SAA
Return vs. Risk
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Performance of SAA
Return vs. Risk
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SAA is an error-maximizing algorithm

I Although SAA makes intuitive sense, it is highly unreliable for
portfolio optimization with real stock return data

I This is well-documented across finance, statistics and OR:
I Markowitz: Frankfurter et al. (1971), Frost & Savarino (1986,

1988b), Michaud (1989), Best & Grauer (1991), Chopra & Ziemba
(1993), Broadie (1993), Lim et al. (2011)

I Michaud (1989): The (in-sample) portfolio optimization solution is
an “error-maximizing” solution

15 / 152



Regularization
I Regularization: perturbing a linear operator problem for improved

stability of solution [Ivanov (1962), Phillips (1962), Tikhonov
(1963)]

I E.g. Least-squares regression with regularization:

min
β∈Rp

||y− Xβ||2 + λn||β||k ,

where λn is the degree of regularization, and k = 1 (LASSO),
k = 2 (ridge regression) yield popular penalty functions.

I Intuition: perturbing the in-sample problem reduces over-fitting; it
adds bias but can improve the variance, which is good for
generalization

I In general, L− 1 norm penalty yields sparse (many elements are exactly
zero) solution vector and L− 2 norm penalty yields dense (many small,
but non-zero elements) solution vector

I While these have justifications in regression problems, it’s not clear why
one would want sparse or dense portfolio solutions
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Performance-based regularization (PBR)

I Performance-based regularization: perturb portfolio problem for
improved performance of the solution

min
w

w>Σ̂nw

s.t . w>µ̂n = R
w>1 = 1

SVar(w>Σ̂nw) ≤ U

I Intuition: penalize solutions w associated with greater estimation
errors of objective

17 / 152



Schematic for PBR
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PBR for Mean-Variance problem

The sample variance of the sample variance of the portfolio,
SVar(w ′Σ̂nw) is given by:

SVar(w ′Σ̂nw) = Σp
i=1Σp

j=1Σp
k=1Σp

l=1wiwjwkwlQ̂ijkl ,

where
I Q̂ijkl = 1

n (µ̂4,ijkl − σ̂2
ij σ̂

2
kl) + 1

n(n−1)(σ̂2
ik σ̂

2
jl + σ̂2

il σ̂
2
jk ),

I µ̂4,ijkl is the sample average estimator for µ4,ijkl , the fourth central
moment of the elements of X

I σ̂2
ij is the sample average estimator for σ2

ij , the covariance of the
elements of X .

PBR constraint for Markowitz is thus a quartic polynomial. However,
determining whether a quartic function is convex or not is an NP-hard
problem [Ahmadi et al. (2013)]
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PBR for Mean-Variance problem

Convex approximation I
I Rank-1 approximation:

(w>α̂)4 ≈ Σp
i=1Σp

j=1Σp
k=1Σp

l=1wiwjwkwlQ̂ijkl ,

where α̂i =
4
√

Q̂iiii .

I Approximate PBR constraint: w>α̂ ≤ 4
√

U
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PBR for Mean-Variance problem

Convex approximation II
I Best convex quadratic approximation:

(w>Aw)2 ≈ Σp
i=1Σp

j=1Σp
k=1Σp

l=1wiwjwkwlQ̂ijkl ,

such that the elements of A are as close as possible to the
pair-wise terms of Q, i.e. A2

ij ≈ Q̂ijij

I Solve semidefinite program: A∗ = argmin
A�0

||A−Q2||F , where Q2 is

a matrix with ij-th element equalling Q̂ijij and || · ||F denotes the
Frobenius norm:

||A||F =

√√√√ m∑
i=1

n∑
j=1

|aij |2

I Approximate PBR constraint: w>A∗w ≤
√

U
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Cross-Validation (CV)
Cross-Validation: if there’s enough data, put aside some for tuning free
parameters (the “validation data set”). E.g. 50% for training, 25% for
validation and 25% for testing

Figure Source: FHT13

k -fold Cross Validation: divide into 2 ≤ k ≤ n sub-training sets to maximize
use of scarce training data.

Figure Source: FHT13

Larger then k , the better the estimation of expected test error, but greater the
computational burden and variance. k = 5,10 are known to balance the
trade-offs well. k = n is leave-one-out CV
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Performance-based CV

I CV: common technique in machine learning to tune free
parameters

I k-fold CV: split training data into k equally-sized bins, train
statistical model on every possible combination of k − 1 bins, then
tune parameter on the remaining bin.

I Performance-based k -fold CV: (1) search boundary for U1 needs
to be set carefully in order to avoid infeasibility and having no
effect; (2) tune parameters by the Sharpe ratio, not by the mean
squared error
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Performance-based Cross-Validation

Figure: A schematic explaining the out-of-sample performance-based k -cross
validation (OOS-PBCV) algorithm used to calibrate the constraint rhs, U, for
the case k = 3. The training data set is split into k bins, and the optimal U for
the entire training data set is found by averaging the best U found for each
subset of the training data.
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Empirical Results: Fama-French data sets
OOS Average Sharpe Ratio (Return/Std)

FF 5 Industry FF 10 Industry
p=5 p=10

Mean-Variance R=0.04
SAA 1.1459 1.1332

2 bins 3 bins 2 bins 3 bins
PBR (rank-1) 1.2603 1.3254 1.1868 1.2098

(0.0411) (0.0286) (0.0643) (0.0509)
PBR (PSD) 1.1836 1.1831 1.1543 1.1678

(0.0743) (0.071) (0.0891) (0.0816)
NS 1.0023 0.9968

(0.1404) (0.1437)
L1 1.0136 1.0386 1.1185 1.1175

(0.1568) (0.1396) (0.1008) (0.1017)
L2 0.9711 1.0268 1.0579 1.0699

(0.1781) (0.1452) (0.1482) (0.1280)
Parentheses: p-values of tests of differences from the SAA method.

25 / 152



Empirical Results: Fama-French data sets
OOS Average Sharpe Ratio (Return/Std)

FF 5 Industry FF 10 Industry
p=5 p=10

Markowitz R=0.08
SAA 1.1573 1.1225

2 bins 3 bins 2 bins 3 bins
PBR (rank-1) 1.3286 1.3551 1.1743 1.2018

(0.0223) (0.0208) (0.0668) (0.0510)
PBR (PSD) 1.1813 1.1952 1.1467 1.1575

(0.0648) (0.0614) (0.0893) (0.0844)
NS 0.9664 0.9405

(0.1514) (0.1577)
L1 0.9225 0.9965 1.0318 1.0779

(0.1857) (0.1403) (0.1332) (0.1181)
L2 0.9703 1.0284 1.0671 1.0776

(0.1649) (0.1398) (0.1398) (0.1209)
Parentheses: p-values of tests of differences from the SAA method.
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Part I Summary

Model Assessment & Selection
I In general, in-sample optimal actions (predictions/decisions) do

not generalize well out-of-sample. For the portfolio selection
problem, solutions overweigh idiosyncratic observations in the
training data.

I Regularization: L1, L2 norm penalties are standard, we explored
more complex ones (PBR) in Ban et al. (2016) to focus on the
performance of a decision, rather than the prediction error.

I Cross-Validation: data-driven methods to tune regularization
parameters

I Can expect better out-of-sample performance with optimal amount
of regularization that balances bias and variance.

I PBR solutions are better than SAA and L1, L2 regularized
solutions on two well-known, publicly available data sets.
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PART II

Statistical Learning Theory

and

Newsvendor Problem

28 / 152



Part II References

Vapnik-Chervonenkis Theory:
I Vapnik, Vladimir N. The nature of statistical learning theory.

Springer Science Business Media, 2013. [VNV13]
I V.N. Vapnik. Estimation of Dependences Based on Empirical

Data. Springer-Verlag, New York, 1982. [VNV82]
Stability Theory:

I Bousquet, Olivier, and André Elisseeff. “Stability and
generalization.” Journal of Machine Learning Research 2. Mar
(2002): 499-526. [BE02]

Newsvendor application:
I Ban, Gah-Yi and Rudin, Cynthia (2014). “The Big Data

Newsvendor: Practical Insights from Machine Learning”. Minor
revision in Operations Research. Available on gahyiban.com
[BR14]

29 / 152

gahyiban.com


What is Statistical Learning Theory?

Consider:
I Input X ∈ X and output response Y ∈ Y
I Data: Dn = [(x1, y1), . . . , (xn, yn)], (xi , yi)

iid∼ P, where P is an
unknown distribution

I Learning algorithm A is a function that maps Dn to a function
f : X 7→ Y.

I f ∈ F is also known the hypothesis, and F the hypothesis class
I Loss function: ` : F × Y 7→ R
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What is Statistical Learning Theory?

I Empirical (in-sample) risk:

Remp(f ,Dn) =
1
n

n∑
i=1

`(f (xi), yi)

I Out-of-sample (or test) risk/Generalization error:

R(f ,Dn) = Eyn+1 [`(f (xn+1), yn+1))|Dn]

I Statistical learning theory is a theoretical framework for
understanding the performance of a learning algorithm

I In particular, the literature has focused on understanding how well
an algorithm generalizes out-of-sample
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Vapnik-Chervonenkis (VC) Theory

I Theorem [VNV82, binary classification]: Let F be a hypothesis
class with a VC dimension d < n. Then for every n > 4,

sup
f∈F
|Remp(f ,Dn)− R(f ,Dn)| < 2

√
d(log(2n/d) + 1) + log(9/δ)

n
,

with probability at least 1− δ, for all 0 < δ < 1.
I This implies

R(f ,Dn) ≤ Remp(f ,Dn) + 2

√
d(log(2n/d) + 1) + log(9/δ)

n

for all f ∈ F with probability at least 1− δ, for all 0 < δ < 1.
I In other words, we have an upper bound on the generalization

error in terms of quantities we can compute.
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Vapnik-Chervonenkis (VC) Theory
I A set of points is said to be shattered by a class of functions if, no

matter how we assign a binary label to each point, a member of
the class can perfectly separate them.

I The VC dimension of the class F is defined to be the largest
number of points (in some configuration) that can be shattered by
members of F .

Source: FHT13
33 / 152



Vapnik-Chervonenkis (VC) Theory

I Proof of Theorem [VNV82]: derive a uniform bound on the error:

PDn

(
sup
f∈F
|Remp(f ,Dn)− R(f ,Dn)| ≥ ε

)
then invert the statement

I See [VNV82, VNV13] for full details
I Related to uniform convergence of empirical processes [see, e.g.

Pollard (1984) or Van der Vaart, Aad W. Asymptotic statistics
(2000).]
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Vapnik-Chervonenkis (VC) Theory
I Vapnik’s Empirical risk minimization principle (equiv. to SAA): find

the hypothesis that minimize the empirical risk function

f̂ = argmin
f∈F

Remp(f ,Dn)

I Then from the VC theory, we have with probability at least 1− δ,

R(f̂ ,Dn) ≤ Remp(f̂ ,Dn) + 2

√
d(log(2n/d) + 1) + log(9/δ)

n
.

I The first term, Remp(f̂ ,Dn) is smaller the larger the class F of hypothesis
considered. The second term however grows in d < n, the VC
dimension of F .

I Thus, to keep the generalization error small, one should consider F with
just the right amount of complexity to minimize the upper bound. This is
the idea behind Vapnik’s Structural Risk Minimization, where one finds
the ERM hypothesis over an increasingly complex class of functions, as
measured by its VC dimension: F0 ⊂ F1 ⊂ . . .
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VC Theory vs. Stability Theory

Limitations of VC Theory:
I VC dimensions of classes of functions are very hard to compute!

Conversely, defining classes of functions with given VC dimension
is difficult as well.

I Worst-case bound: applies to all hypothesis in F .
Stability Theory is a more recently developed framework for learning
theory that addresses the shortcomings of VC Theory.

I Key: derive bounds that are algorithm-specific, rather than over
the whole hypothesis class (i.e. customized not worst-case bound)

I As such, measuring the complexity of the hypothesis class is not
needed.
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VC Theory vs. Stability Theory

Instead of a uniform bound

PDn

(
sup
f∈F
|Remp(f ,Dn)− R(f ,Dn)| ≥ ε

)
,

Stability Theory derives an algorithm-specific bound

PDn (|Remp(A,Dn)− R(A,Dn)| ≥ ε) ,
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Stability Theory

I Training set: Dn = {z1 = (x1, y1), . . . , zn = (xn, yn)}, z ∈ Z,
I Modified training set I:

D\in := {z1, . . . , zi−1, zi+1, . . . , zn},

which leaves i-th observation out.
I Modified training set II:

Di
n := {z1, . . . , zi−1, z ′i , zi+1, . . . , zn},

where z ′i is drawn independently from X × Y
I Learning algorithm A is symmetric with respect to Dn if for all

permutations π : Dn → Dn of the set Dn,

ADn = Aπ(Dn) = A{π(z1),...,π(zn)}.
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Stability Theory
Definition (Uniform stability)
A symmetric algorithm A has uniform stability β with respect to a loss
function ` if for all i ∈ {1, . . . ,n},

sup
Dn∈Zn

sup
Y∈Y
‖`(ADn ,Y )− `(A

D\i
n
,Y )‖ ≤ β. (1)

Theorem (BE02)
Let A be an algorithm with uniform stability β wrt a loss function `
where 0 ≤ `(ADn , z) ≤ M for all z ∈ Z and all Dn. Then for any n ≥ 1
and any δ ∈ (0,1),

R(A,Dn) ≤ Remp(A,Dn) + 2β + (4nβ + M)

√
log 1/δ

2n

with probability at least 1− δ.
Note: the results are tight when β = O(1/n). Call an algorithm
uniformly stable if this is the case. 39 / 152



Stability Theory: Proof

Theorem (McDiarmid, 1989)
For any measurable function F : Zn 7→ R, if there exists ci , i = 1, . . . ,n
such that

sup
Dn∈Zn

sup
z′

i ∈Z
|F (Dn)− F (Di

n)| ≤ ci ,

then

PDn (|F (Dn)− EDn [F (Dn)]| ≥ ε) ≤ exp

{
−2ε2∑n

i=1 c2
i

}

Note: the results are tight when β = O(1/n). Call an algorithm
uniformly stable if this is the case.

Strategy: Let F := R − Remp and show this satisfies the conditions for

McDiarmid with ci = 4β +
M
n

.
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Stability Theory: Proof

Strategy: Let F := R − Remp and find bounding constant ci ’s:

sup
Dn∈Zn,z′

i ∈Z
|F (Dn)− F (Di

n)| ≤ ci ,

Jensen’s ineq: |R − R\i | ≤ Ez [|`(ADn , z)− `(A, z)|] ≤ β

+ Triangle ineq: |R − R i | ≤ |R − R\i |+ |R\i − R i | ≤ 2β
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Stability Theory: Proof

Invoking the Triangle inequality twice:

|Remp − R i
emp|

≤ 1
n

∑
j 6=i

|`(ADn , zj )− `(ADi
n
, zj )|+

1
n
|`(ADn , zi )− `(ADi

n
, z ′i )|

≤ 1
n

∑
j 6=i

|`(ADn , zj )− `(AD\i
n
, zj )|+

1
n

∑
j 6=i

|`(AD\i
n
, zj )− `(ADi

n
, zj )|

+
1
n
|`(ADn , zi )− `(Ai

Dn
, z ′i )|

≤ 2β +
M
n

Finally, by β-stability, can show

EDn [R − Remp] ≤ 2β.
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Stability Theory: Proof

Putting everything together, we get, for F := R − Remp,

sup
Dn∈Zn

sup
z′

i ∈Z
|F (Dn)− F (Di

n)| ≤ 4β +
M
n
∀ i = 1, . . . ,n.

Thus, by McDiarmid’s inequality, we have

PDn (R − Remp ≥ ε+ 2β) ≤ exp

{
−2nε2

(4nβ + M)2

}
.

Setting the RHS to δ and inverting we arrive at the statement of the
theorem.
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Examples of Uniformly Stable Algorithms

I Soft margin SVM classification, where f (x) = w>x − b for some
w ∈ Rp and b ∈ R, for Y = {−1,1} with loss `(f , z) = (1− yf (x))+

I L2 regularized Least-Squares regression, for bounded Y with loss
`(f , z) = (f (x)− y)2

I Some algorithms for the Newsvendor loss function [BR14]
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The Newsvendor Problem

I D ∼ µ is the random future demand,
I q is the order quantity
I Order according to:s

q∗ ∈ argmin
q≥0

ED∼µ[b(D − q)+ + h(q − D)+],

where
I b is the underage cost
I h is the overage cost
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The Data-Driven Newsvendor

I Assume you have past demand data d1, . . . ,dn

I Then order according to:

q̂n ∈ argmin
q≥0

1
n

n∑
i=1

[b(di − q)+ + h(q − di)
+],

I Stochastic Programming: Sample Average Approximation (SAA)

I Can show: q̂n
P→ q∗ exponentially fast as n→∞

I Levi, Roundy & Shmoys (2007)
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The “Big” Data Newsvendor

I Past data are now (x1,d1), . . . , (xn,dn), where xi ∈ X ⊂ Rp

I Problem is now finding the optimal function q : X → R:

min
q∈Q={q:X→R}

1
n

n∑
i=1

[b(di − q(xi))+ + h(q(xi)− di)
+]

I How should we choose Q?
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The “Big” Data Newsvendor

I Consider linear decisions:

Q =

q : X → R : q(x) = q>x =

p∑
j=1

qjx j

,
where x1 = 1, to allow for a feature-independent term

I Not very restrictive: nonlinear transformation of the basic
features can capture nonlinear dependencies
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The “Big” Data Newsvendor

Newsvendor with Features is thus:

min
q=[q1,...,qp]

1
n

n∑
i=1

(bui + hoi)

s.t . ∀ i = 1, . . . ,n :

ui ≥ di − q>xi

oi ≥ q>xi − di

ui ,oi ≥ 0 (NV-ML)

I Equivalent to quantile regression

49 / 152



Big Data Newsvendor with Regularization

min
q=[q1,...,qp]

1
n

n∑
i=1

(bui + hoi) + λ||q||k

s.t . ∀ i = 1, . . . ,n :

ui ≥ di − q>xi

oi ≥ q>xi − di

ui ,oi ≥ 0, (NV-ML-Reg)

where
I λ is the regularization parameter
I k = 0,1,2: MIP, LP, SOCP
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The Big Data Newsvendor: Kernel-weights
Optimization

I SAA is only one way to approximate expected value
I Nadaraya (1964) and Watson (1964): given (x1, y1), . . . , (xn, yn),

estimate E[Y |xn+1], by locally weighted average

E[Y |xn+1] =

∑n
i=1 Kw (xn+1 − xi)yi∑n
i=1 Kw (xn+1 − xi)

,

where Kw (·) is a kernel function with bandwidth w
I Common kernel functions:

I Uniform kernel
Kw (u) =

1
2w

I(‖u‖2 ≤ w)

I Gaussian kernel

Kw (u) =
1√

2πw
exp−‖u‖

2
2/2w2

51 / 152



The Big Data Newsvendor: Kernel-weights
Optimization

I For an order quantity q, the BDNV expected cost after observing
xn+1 is:

E[C(q; D)|xn+1]

where C(q; D) = b(D − q)+ + h(q − D)+

I This motivates a new approach to solving BDNV:

min
q≥0

∑n
i=1 Kw (xn+1 − xi)C(q,di)∑n

i=1 Kw (xn+1 − xi)
(NV-KO)
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The Big Data Newsvendor: Kernel-weights
Optimization

Proposition The optimal feature-based newsvendor decision q̂κn
obtained by solving (NV-KO) is given by

q̂κn = q̂κn (xn+1) = inf

{
q :

∑n
i=1 κiI(q ≤ di)∑n

i=1 κi
≥ b

b + h

}
,

where κi = Kw (xn+1 − xi).
I i.e. we can find q̂κn by plugging-in the past demand in increasing

order, and choosing the smallest value at which the inequality
above is satisfied.
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Stability bounds for Big Data NV

Proposition (Uniform stability of (NV-ML))
The learning algorithm (NV-ML) with iid data is symmetric and uniformly
stable with respect to the newsvendor cost function C(·, ·) with stability
parameter

β =
D̄(b ∨ h)2

(b ∧ h)

p
n
.

Theorem (Bound on the Gen. error of (NV-ML))
Let q̂ be the solution to (NV-ML). Then with probability at least 1− δ,

|R(q̂; Sn)− R̂in(q̂; Sn)|

≤ (b ∨ h)D̄

[
2(b ∨ h)

b ∧ h
p
n

+

(
4(b ∨ h)

b ∧ h
p + 1

)√
ln(2/δ)

2n

]
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Stability bounds for Big Data NV
Proposition (Uniform stability of (NV-ML-Reg))
The learning algorithm (NV-ML-Reg) with k = 2 is symmetric, and is uniformly
stable with respect to the newsvendor cost function C with stability parameter

β =
(b ∨ h)2X 2

maxp
2nλ

,

where the feature vector X is normalized (X1 = 1 almost surely, X[2:p] has
mean zero and standard deviation one) and that it lives in a closed unit ball:
||X||2 ≤ Xmax

√
p.

Theorem (Bound on the Gen. error of (NV-ML-Reg))
Denote the solution to (NV-ML-Reg) by q̂λ = q̂λ(xn+1). Then with probability
at least 1− δ,

|R(q̂λ; Sn)− R̂in(q̂λ; Sn)|

≤ (b ∨ h)D̄

[
(b ∨ h)X 2

maxp
nλD̄

+

(
2(b ∨ h)X 2

maxp
λD̄

+ 1
)√

log(2/δ)

2n

]
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Stability bounds for Big Data NV
Proposition (Uniform stability of (NV-KO))
The algorithm (NV-KO) with iid data and the Gaussian kernel is symmetric
with respect to the newsvendor cost function C(·, ·) with uniform stability
parameter

β =
D̄(b ∨ h)2

(b ∧ h)

1
1 + (n − 1)rw

,

where rw = exp(−2X 2
maxp/w2).

Theorem (Bound on the Gen. error of (NV-KO))
Denote the solution to (NV-KO) with the Gaussian kernel by q̂κ = q̂κ(xn+1).
Then with probability at least 1− δ,

|R(q̂κ; Sn)− R̂in(q̂κ; Sn)| ≤

(b ∨ h)D̄

[
2(b ∨ h)

b ∧ h
1

1 + (n − 1)rw (p)
+

(
4(b ∨ h)

1/n + (1− 1/n)rw (p)
+ 1
)√

log(2/δ)

2n

]

where rw (p) = exp(−2X 2
maxp/w2), w the kernel bandwidth.
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Stability bounds for Big Data NV

I (NV-ML): bound scales as O(p/
√

n)

I (NV-ML-Reg): bound scales as O(p/
√

nλ); want λ large for better
generalization

I (NV-KO): bound scales as O(1/
√

nrw (p)), so can be controlled by
increasing rw (p) by increasing the kernel bandwidth w . This
makes sense: larger w corresponds to smoother comparisons of
past features to the one in n + 1.

I Of course, generalization error isn’t everything- improved
generalization error comes at the cost of increased finite-sample
bias. See [BR14] for details.
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Nurse Staffing in a Hospital Emergency Room

I Mandatory/recommended nurse-to-patient ratio
I Underage: must call expensive agency nurses; Overage: idle

regular nurses
I Data: emergency room of a large UK hospital from July 2008-Feb

2009, recorded every two hours
I Features: day of the week, time of the day, 2 weeks of past

demand (171 features)
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Nurse Staffing in a Hospital Emergency Room

59 / 152



Methods considered

Abbreviation Description Reg.? Free parameter
1. SAA-day SAA by day of the week None None
2. Ker-0 (NV-KO) with Gaussian kernel None bandwidth
3. Ker-OS " None "
4. NV-0 solve (NV-ML) None no. of days of past de-

mand
5. NV-OS " None "
6. NVreg1 solve (NV-ML-Reg) Yes, `1 regularization parame-

ter
7. NVreg1-OS " Yes, `1 "
8. NVreg2 " Yes, `2 "
9. NVreg2-OS " Yes, `2 "
10. SEO-0 OLS regression + NV opt. None no. of days of past de-

mand
11. SEO-OS " None "
12. SEOreg1 Lasso regression + NV opt. Yes, `1 regularization parame-

ter
13. SEOreg1-OS " Yes, `1 "
14. SEOreg2 Ridge regression + NV opt. Yes, `2 "
15. SEOreg2-OS " Yes, `2 "
16. Scarf Minimax optimization None no. of days of past de-

mand
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Out-of-Sample Results

Method Calibrated
parameter

Mean (95 % CI) Annual cost savings
rel. to SAA-day

1. SAA-day — 1.523 (± 0.109) —
3. Ker-OS h = 1.62 1.156 (± 0.140) £46,555 ($ 74,488)
4. NV-0 12 days 1.326 (± 0.100) £24,909 ($ 39,854)
7. NVreg1-OS 1× 10−7 1.174 (± 0.113) £44,219 ($ 70,750)
9. NVreg2-OS 1× 10−7 1.215 (± 0.111) £39,065 ($ 62,503)
10. SEO-0 1 day 1.279 (± 0.099) £30,952 ($ 49,523)
16. Scarf 12 days 1.593 (± 0.114) —

Table:
III Assuming hourly wage of an agency nurse is 2.5 times that of a regular nurse.

I Assuming a regular nurse salary of £25,000 (which is the Band 4 nurse salary for the
National Health Service in the United Kingdom in 2014) and standard working hours. Cost
savings in USD assumes an exchange rate of £1: USD 1.6.
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Out-of-Sample Results

Method Calibrated
parameter

Avg. Time (per
iteration)

Annual cost savings
rel. to SAA-day

1. SAA-day — 14.0 s —
3. Ker-OS h = 1.62 0.0494 s £46,555 ($ 74,488)
4. NV-0 12 days 325 s £24,909 ($ 39,854)
7. NVreg1-OS 1× 10−7 114 s £44,219 ($ 70,750)
9. NVreg2-OS 1× 10−7 107 s £39,065 ($ 62,503)
10. SEO-0 1 day 10.8 s £30,952 ($ 49,523)
16. Scarf 12 days 20.8 s —

Table:
III Assuming hourly wage of an agency nurse is 2.5 times that of a regular nurse.

I Assuming a regular nurse salary of £25,000 (which is the Band 4 nurse salary for the
National Health Service in the United Kingdom in 2014) and standard working hours. Cost
savings in USD assumes an exchange rate of £1: USD 1.6.
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Part II Summary

Statistical Learning Theory:
I Framework for analyzing in-sample and out-of-sample errors
I Origins: VC Theory (uniform convergence of empirical processes),

more recently Stability Theory (McDiarmid’s inequality)
I Value: can theoretically compare different learning algorithms, in

particular how they scale with problem parameters and data size
I Complements other dimensions of algorithmic performance: e.g.

computational efficiency, performance on real data sets,
interpretability
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Take Aways & Future Directions

I “Traditional” stochastic modeling won’t become obsolete — if
anything, more important/appreciated by the outer world as more
and more OR results become implementable and generate
economic value

I However, starting from real data or evidence-based assumptions
about the data-generating process will become increasingly
important

I New research opportunities (beyond glorified case-studies):
building innovative data-integrated decision models, designing
efficient algorithms, performance analysis (asymptotics,
finite-sample bounds, learning rates)

I Will upload slides on gahyiban.com soon
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